How to build Enclosures for Reptiles
Copyright Notices
Copyright © 2004 Wired4U

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, mechanical or electronic, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Requests for permission or further information should be addressed to

Wired4U
PO Box 382
Balnarring, Victoria 3926
Australia
Email: support@reptile-cage-plans.com

Legal Notices

While all attempts have been made to verify information provided in this publication, neither the author nor the Publisher assumes any responsibility for errors, omissions or contrary interpretation of the subject matter herein.

This publication is not intended for use as a source of legal or accounting advice. The Publisher wants to stress that the information contained herein may be subject to varying state and/or local laws or regulations. All users are advised to retain competent counsel to determine what state and/or local laws or regulations may apply to the user’s particular business.

The purchaser or reader of this publication assumes responsibility for the use of these materials and information. Adherence to all applicable laws and regulations, both federal and state and local, governing professional licensing, business practices, advertising and all other aspects of doing business in the United States or any other jurisdiction is the sole responsibility of the purchaser or reader. The author and Publisher assume no responsibility or liability whatsoever on the behalf of any purchaser or reader of these materials.

Any perceived slights of specific people or organizations are unintentional.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Aim of book</td>
<td>4</td>
</tr>
<tr>
<td>Cage Design</td>
<td>5</td>
</tr>
<tr>
<td>General design information</td>
<td>6</td>
</tr>
<tr>
<td>Cage types</td>
<td>6</td>
</tr>
<tr>
<td>Doors - Glass versus Plexiglass (Perspex)</td>
<td>7</td>
</tr>
<tr>
<td>What lighting will you use?</td>
<td>7</td>
</tr>
<tr>
<td>How will you ventilate your cage?</td>
<td>7</td>
</tr>
<tr>
<td>How will you heat your cage?</td>
<td>8</td>
</tr>
<tr>
<td>Size of the cage</td>
<td>9</td>
</tr>
<tr>
<td>Building Materials</td>
<td>10</td>
</tr>
<tr>
<td>MDF</td>
<td>10</td>
</tr>
<tr>
<td>Melamine</td>
<td>10</td>
</tr>
<tr>
<td>Plywood</td>
<td>10</td>
</tr>
<tr>
<td>Shelving board</td>
<td>10</td>
</tr>
<tr>
<td>Tools you need</td>
<td>11</td>
</tr>
<tr>
<td>Basic tools list</td>
<td>11</td>
</tr>
<tr>
<td>Other Items</td>
<td>12</td>
</tr>
<tr>
<td>Plans for 4’x2’ or 3’x2’ Cage</td>
<td>14</td>
</tr>
<tr>
<td>List of materials for Terrestrial Cage</td>
<td>15</td>
</tr>
<tr>
<td>Timber List for 3’ x 2’ Cage</td>
<td>15</td>
</tr>
<tr>
<td>Timber List for 4’ x 2’ Cage</td>
<td>15</td>
</tr>
<tr>
<td>Other materials (both door types)</td>
<td>16</td>
</tr>
<tr>
<td>Diagrams</td>
<td>17</td>
</tr>
<tr>
<td>Step by step instructions</td>
<td>24</td>
</tr>
<tr>
<td>Main Structure</td>
<td>24</td>
</tr>
<tr>
<td>Step 1 - Cutting the pieces</td>
<td>24</td>
</tr>
<tr>
<td>Before you start joining the pieces</td>
<td>25</td>
</tr>
<tr>
<td>Step 2 - Putting on the sides and back</td>
<td>26</td>
</tr>
<tr>
<td>Step 3 - Putting on the top</td>
<td>28</td>
</tr>
<tr>
<td>Step 4 - Putting on the Front pieces</td>
<td>29</td>
</tr>
<tr>
<td>Step 5 - Installing the vents</td>
<td>32</td>
</tr>
<tr>
<td>Step 6 - Putting on a Door</td>
<td>34</td>
</tr>
<tr>
<td>Painting</td>
<td>43</td>
</tr>
<tr>
<td>Putting it all together</td>
<td>45</td>
</tr>
<tr>
<td>Step 7 - Adding Locks</td>
<td>45</td>
</tr>
<tr>
<td>Step 8 – Adding Door Fasteners</td>
<td>46</td>
</tr>
<tr>
<td>Step 9 – Lighting</td>
<td>48</td>
</tr>
<tr>
<td>Step 10 - Heating</td>
<td>51</td>
</tr>
<tr>
<td>Where to from here?</td>
<td>53</td>
</tr>
<tr>
<td>Cage Accessories and Furniture</td>
<td>53</td>
</tr>
<tr>
<td>Castors</td>
<td>54</td>
</tr>
<tr>
<td>Cage Variations</td>
<td>55</td>
</tr>
<tr>
<td>Conclusion</td>
<td>62</td>
</tr>
</tbody>
</table>

©reptile-cage-plans.com
Introduction

IMPORTANT:

Read through the entire book first if you are new to making snake cages.

Remember, it’s a working document so you can alter things as you develop.

Making your own reptile cage can be a fun and rewarding process. This book will show you how to build a reptile or snake cage that is functional, long lasting and attractive.

Building cages is not difficult but you will need some basic tools and understanding. Even if you do not have all of the tools listed there are some tips you make a finished cage that looks great. If you are concerned about your ability, this book will show you tips and tricks to make life a lot easier and help you achieve your goals.

Aim of book

The aim of the book is to help you build a cage that will house your reptile in a comfortable, clean and secure environment.

The cages have been designed to be simple to construct and easy to take care of. The designs are deliberately simple but once you have mastered the basics you can build more complex cages yourself, using the knowledge and skills you acquire building your cages.

Once you have covered the basics you:

• Can make it to suit your individual personality and style
• Can make it to suit your budget
• Build it to the size you want
• Can use a range of materials to suit your circumstances
• Can re-use the plans again and again
• Stop you wasting money on deluxe reptile tanks
• Save money as it’s cheaper than snake starter kits
• Can spend the money you save on other accessories
• Build your own reptile enclosure your own cage to show it off to your friends!
• Learn how to construct snake enclosures so you can improve on them
• Never have to buy custom snake cages again

©reptile-cage-plans.com
Cage Design

General design information

Captive snakes can thrive and breed in either lush cages or spartan quarters, but the aim in all cases is to provide a healthy, secure and absolutely escape-proof environment. Some species do, of course, have more specific caging necessities. Terrestrial (ground) snake species, for example, do well in horizontally oriented cages but we urge you to consider vertically oriented cages for arboreal (tree climbing) species. Other species have specific humidity requirements.

These cages can be used for most species but there are some species of snakes and reptiles that have specific needs. You need to determine whether the species you are planning to house has specific needs. For example

1. Will the cage provide adequate space for the species? How large does the animal grow to and how much space will it require?
2. If there are any species specific requirements such as arboreal or burrowing needs, does the cage satisfy them?
3. If the cage is to house venomous species, does it provide for the safety of the keeper when servicing the cage?

If the answer to any of these is no or almost, then the design must be changed. The cages we show you how to build will work for most species of snake or lizards but if you have something more exotic you will need to do some reading and find out exactly what your pet requires.

If you have a reptile seller in the area or know others who have similar reptiles it is important that you find out as much as you can about keeping that particular animal. Some reptiles require specific care and have specific needs.

We would also strongly recommend that if you keep snakes, they are non-venomous. Venomous snakes can be extremely dangerous and even deadly. They should only be kept by an experienced snake handler with very good knowledge and understanding of snakes and their behaviours.

This book is not designed to give you all the information about reptile care. Whilst some information is provided, it is important that you, as a reptile owner, find out as much as possible about your particular pet’s needs and also about keeping reptiles healthy and comfortable.
Cage types

There are a range of cage types. The most obvious of these is the difference between terrestrial cages which are elongated and arboreal cages which are tall.

Cages can have sliding glass doors, lids that open at the top, front opening doors, double doors, borrowing areas etc.

There are a multitude of variations. This book will outline how to build a basic, effective and easily built cage. Once you have the skills and tools you can pretty well make whatever you like.

The basic design you will be building will have a lockable, hinged front door.

This front door can be made of Perspex or Plexiglass or it can be a wooden door with a glass or plexiglass insert. These plans will show you how to make both sorts.

These plans contain 4 main variations on cage size but it is a simple task to change this to any size larger or smaller by following our simple directions.

There are a few decisions you need to make before you begin building and purchase your materials.
Doors - Glass versus Plexiglass (Perspex)

This is a personal decision but I have decided that for terrestrial cages I prefer Plexiglass (either 3/16” or 1/4”). Larger cages and arboreal cages are still better made with glass due to both cost and the size of the doors, clear area or other factors. For example, hinging a large door is far easier with a framed wooden door than Plexiglass as you need a very thick and expensive piece of Plexiglass for a larger door, particularly with the cabinet hinges, which I prefer on larger vertical doors due to their strength and ability to be adjusted.

For most cages these are the principal differences:
- Glass is heavier than Plexiglass or Perspex
- Glass doors are harder to make
- The glass can break in the making process
- Glass does not scratch so it better for reptiles with sharp claws and sharp spikes.
- Glass doors are generally cheaper, but not by much.
- Plexiglass scratches so you need to be careful in the construction not to scratch it.

Sliding glass doors are another option but these will not be covered in the scope of this book. They require track mounts and special locks. Ideally they should even be on ball bearings. They can be easily incorporated into these cage designs if you have some basic building skills.

What lighting will you use?

The cages generally will have two types of lighting – a basking light or lights for heating and a fluorescent UV light. Many species of snake do not require the UV light but again you are urged to find out the specific requirements for your snake or reptile and having a UV light is usually a good idea anyway.

Lizards, tortoises, turtles and crocodilians require UVB light for the synthesis of Vitamin D3.

If you are uncertain, it is better to have both a basking light and a UV light like a Zoo Med's Reptisun 5.0 UVB. There is a lot of information on this subject and you should ask your local supplier or do some research on the internet if you are uncertain.
How will you ventilate your cage?

The ventilation can be done using a range of different materials. I generally use plastic vents available from larger hardware or building supplies but equally you can use aluminium mesh, plastic mesh and even plastic sheet with holes drilled in it. I like too steer clear of anything with rough edges that the reptiles can rub on and damage themselves. I also like the plastic vents because they look professional and are easy to fit.

Snakes have a slow metabolism so you do not need to over-ventilate the cage. It needs enough ventilation to have a small air flow. Usually the heat lamps and the heat gradient provide sufficient air movement to keep the cage well ventilated.

How will you heat your cage?

There are a range of options available. Heat mats are a good form of heating as they can be placed below the substrate and managed with a thermostat. I do not want to go into a lot of detail with the various solutions but I have found the best solution is Flexwatt heat tape.

Flexwatt make a range of heat mats in different widths that can be cut to length and easily connected to a thermostat. They can under directly under the substrate in the cage or under the cage. I used mine under newspaper with a substrate on top. This makes it easier to clean and enables good temperature control.

I have used some of the commercial heat mats but they were expensive and I found one I used was inclined to overheat – buckling timber it got so warm. I am also wary of heat rocks as there are some owners that claim their animals have suffered burns with them if they malfunction.

It is important that you provide a heat gradient in the cage using a combination of basking lights and heat mats, your reptile will be able to choose where it wants to be at any particular time of the day. The heat mats should cover approximately 1/2 to 2/3 of the base of a terrestrial cage, allowing plenty of room for the animals to move about. The basking lights should be over above an area of the heat mat in terrestrial cages so the cage goes from a hot area where the reptile can bask, to a cooler area where there is no direct heating.

Arboreal cages should use basking lights (heat lamps) at the top and even part way up the cage. Take care to make sure the animal cannot come into contact with the lamp to prevent burns.

Always use a thermometer to monitor the temperature of the cage. Used in conjunction with a thermostat you can achieve a reliable temperature gradient for your reptile. Owners with many reptile owners sometime use temperature guns to spot check parts of the cage.
Size of the cage

Snakes and reptiles are generally shy and retiring creatures so like to have shelter in the cage. When they are small, you can get away with small containers, providing you have adequate heating, shelter and light.

The size of the cage you use for a snake is generally about 2/3’s of the length of the snake. A snake that grows to 6ft will do quite well in a 4’x2’ cage. A snake that grows to around 4-5ft will be OK in a cage about 3’x2’. A snake that grows to 8’-9’ will require a cage about 6’, etc.
Building Materials

You need to decide what you will make your cage out of. These days there are a lot of choices. Some of these are outlined below. Each has there good point and bad points.

MDF

MDF is used for a lot of building products these days. It is very easy to cut and use, can be painted easily so it looks good and you can use reasonably thin sheets to make the cages. It is one of my preferred building materials. MDF comes in a many forms. You can get the standard 4x8 sheet, as well as pre cut pieces in 12, 16, and 24 inch widths, both 4 and 8 feet long. You should wear a mask when cutting it as it is very dusty.

Melamine

Melamine is a good cage building material, it holds up well over time, and is easy to clean. It’s easy to work with, and makes a reasonably nice looking cage. Melamine comes in a variety of forms. You can get the standard 4x8 sheet, as well as pre cut pieces in 12, 16, and 24 inch widths, both 4 and 8 feet long. While you can get colors, they are not always easily available. If you are prepared to hunt for them there is quite a range. Melamine is heavy and as the chips are large you need to use thicker sheets for strength, making the cages very heavy. If you do use it, it is often a good idea to use heavy duty castors on bigger cages, but again, these come at a cost. The other drawback is that you need to use a strip on the edges that are uncovered. These strips are quite easy to use as they can be ironed on with a household iron. Be sure to match the exact width of the melamine as cutting it back afterwards can ruin the entire appearance of that section.

Some of the newer melamine sheets look laminated and would make an attractive cage. Again cost is a factor that needs to be considered.

Plywood

Cheap plywood will look cheap and the better plywoods can be expensive. It is a good material to build with as it is strong. It can be a bit too flexible. Cabinet grade plywood will make very good looking cages, but these sheets are very expensive.

Shelving board

Pine shelving board can be used to advantage when building a cage. Shelving board comes in various widths up to 12”, and is ¾” thick. The width limits it somewhat as you have to use multiple pieces for large areas. These can be glued together but large clamps and extra tools are required.
Tools you need
There are some tools that are required to do any real cage building, and others that you will find of great benefit. They can be done without but you need to be more careful. The more tools you have available, whether you borrow or purchase them, the easier your cage building will be.

TIP: You can also get around some of the more difficult sheet cuttings by going to a local cabinet maker with the pre-set sizes you find in the book. I have done this before and for a few dollars they will cut the pieces to the sizes you require. And the will be VERY accurate.

Basic tools list:

Essential Electric tools
The price of many of these has reduced so much in recent times. The money I can save on buying one cage is enough to pay for two or three cheap electric tools.

Hand drill – This is vital in my opinion and they can be bought for very little. Borrow one if you have to. I use screws to put the cages together as they are stronger and hold better. I pre-drill quite few holes and also use the Philips head, self tapping screws to save time and effort. A set of bits is essential.

Circular saw – These are very useful. If you do not have one, a handsaw can be used but they are much more difficult. It is hard to cut

Jigsaw – Needs for cutting out vent holes. You can use a keyhole saw but I would recommend one of these if you intend on doing much cage building. They are not expensive.

Optional Electric Tools
Palm or belt sander – Sanding is hard work and one of these will save you lot of time and effort. How sore do you want your arm to be?

Table saw or Radial Arm saw – both of these are used for making good cuts, and ripping boards to a narrower width. If you do not have one, use a circular saw or see the tips above.

Router – This is not really required, but if you are going to build glass doors they are very handy. You can also use them for building arboreal cages when you make the doors.
Electric Plane – great for trimming down pieces when you are a little bit out. Smooths edges and will make cage making a lot easier.

Compound Miter Saw – Used to cut 45° angles. If you are making glass doors it is useful but generally you can use a miter box and handsaw. Not required really.

Essential Hand tools
- **Square** – Making square cuts is essential if you are cutting the timber yourself. These are very useful. It’s better to have a large one and a smaller one.
- **Tape measure (and ruler)** – Essential
- **Philips head screw bit** – Essential for putting in your screws with an electric drill
- **Sharp Knife** – used for cutting wires etc
- **Adjustable wrench** – does not have to be large but you need to tighten nuts on bolts.
- **Hammer** – Essential
- **Countersink** – use these to set the heads of screws in flush with the surface of the wood.
- **Tinsnips** – great for cutting hardware cloth or other wire mesh
- **Screwdrivers** – Used for wiring lights and screwing materials together.

Optional Hand tools
- **90° clamp** - This is a clamp used to secure two pieces of wood cut on 45° angles. Used one to make door frames for glass doors. If you are making glass doors these are very useful as the doors can be difficult to clamp and glue otherwise.
- **Chisel** – useful general tool
- **Silicone Gun** – this is necessary if you are going to make glass doors. It holds in the glass and is flexible, reducing the likelihood of breakage.

Other Items

Screw holes
I use wooden plugs to fill holes that have the screws but this requires a drill stand and special bits that make the plugs. It is well worth the trouble if you are going to build other items.

Glues
Weldbond is very good glue for things like snake cages. Liquid nails, PVA glues and general purpose wood glues are all fine. It is important to glue edges of the main...
components as it will make the cage stronger and last a lot longer. While the screws will hold the cage together, glue makes it a lot more rigid and strengthens the whole piece.

Screws

Self tapping screws make building the cage a lot faster. A cordless drill is much better for this as you can adjust the torque (meaning you do not ruin the screw head and can apply the right amount of pressure)

Pre-drilling some of the holes to guide the screws and make it easier is important.

| **TIP:** Pre-drill the holes when joining the sides, back top and bottom for the main sections. This will make sure the screws go in straight and do not go sideways and into or outside the cage. |

Putty

Wood putty is useful for fixing up minor blemishes and mistakes. If you countersink your screws you can fill in the holes with putty. If you paint the cage, you will not see any of the screws or screw holes.

Silicone

This is useful for covering over rough bits like bolts and also to help waterproof the cage.

Paint and finishing

If you use MDF you can use a spray pack paint can to paint the cage, as the material has a very smooth finish.

If you make your cages from plywood, you can use a polyurethane or clear finish. You can also stain it to darken it and give a better appearance. Generally the plywood is rougher and these sorts of finishes will look better on this material.

Melamine does not require paint but you do need to cover the edges that are exposed with an iron on strip so the wood chips do not show through.

If you do paint or use a clear coating on a cage you need to give it plenty of time to not only dry but to air the cage out and remove as many of the excess vapors as possible before putting an animal into the cage.
Plans for 4'x2' or 3'x2' Cage

Let’s get started. These plans will make a cage that has a melamine base with MDF, melamine or plywood sides and timber strips across the front to act as both a substrate dam and to strengthen the structure.

TIP: Making a cage is NOT a race.

TAKE YOUR TIME.

If you are uncertain at any point, STOP what you are doing, READ the instructions and THINK about what you NEED to do to solve the problem.

If you are flustered, WALK AWAY for 30 minutes and then COME BACK.

You will find a list of materials for 3'x2' case below, along with screws, bolts, hinges, lighting and other material.

There are two sets of materials listed for the 3'x2' cages and the 4'x2' cages.

This is because you can use 1/2" thick sheeting or 3/4" thick sheeting. This book tries to account for both and you need to be clear on which it is you are using.

Essentially, the thickness or your material will determine the size of the base and the back. See Diagrams for a more complete explanation.
List of materials for Terrestrial Cage

Timber List for 3’ x 2’ Cage

<table>
<thead>
<tr>
<th>Timber</th>
<th>1/2” MDF or Plywood</th>
<th>3/4” MDF or Plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (Melamine)</td>
<td>2’ 11” x 1’ 11 1/2”</td>
<td>2’ 10 1/2” x 1’ 11 1/4”</td>
</tr>
<tr>
<td>Top</td>
<td>3’ x 2’</td>
<td>3’ x 2’</td>
</tr>
<tr>
<td>Sides</td>
<td>2’ x 1’ 6”</td>
<td>2’ x 1’ 6”</td>
</tr>
<tr>
<td>Back</td>
<td>2’ 11” x 1’ 6”</td>
<td>2’ 10 1/2” x 1’ 6”</td>
</tr>
<tr>
<td>Main front strip (pine or other timber)</td>
<td>3’ x 4” x 3/4”</td>
<td>3’ x 4” x 3/4”</td>
</tr>
<tr>
<td>Top front strip (pine or other timber)</td>
<td>3’ x 1 3/4” x 3/4”</td>
<td>3’ x 1 3/4” x 3/4”</td>
</tr>
<tr>
<td>Glass Door Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Frame (3/4” pine or other timber)</td>
<td>3 pieces @ 3’ x 1 3/4” 2 @ 1’ 6”</td>
<td>2 pieces @ 3’ x 1 3/4” 2 @ 1’ 6”</td>
</tr>
</tbody>
</table>

Timber List for 4’ x 2’ Cage

<table>
<thead>
<tr>
<th>Timber</th>
<th>1/2” MDF or Plywood</th>
<th>3/4” MDF or Plywood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (Melamine)</td>
<td>3’ 11” x 1’ 11 1/2”</td>
<td>3’ 10 1/2” x 1’ 11 1/4”</td>
</tr>
<tr>
<td>Top</td>
<td>4’ x 2’</td>
<td>4’ x 2’</td>
</tr>
<tr>
<td>Sides</td>
<td>2’ x 1’ 6”</td>
<td>2’ x 1’ 6”</td>
</tr>
<tr>
<td>Back</td>
<td>3’ 11” x 1’ 6”</td>
<td>3’ 10 1/2” x 1’ 6”</td>
</tr>
<tr>
<td>Main front strip (pine or other timber)</td>
<td>4’ x 4” x 3/4”</td>
<td>4’ x 4” x 3/4”</td>
</tr>
<tr>
<td>Top front strip (pine or other timber)</td>
<td>4’ x 1 3/4” x 3/4”</td>
<td>4’ x 1 3/4” x 3/4”</td>
</tr>
<tr>
<td>Glass Door Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Frame (3/4” pine or other timber)</td>
<td>2 pieces @ 4’ x 1 3/4” 2 @ 1’ 6”</td>
<td>2 pieces @ 4’ x 1 3/4” 2 @ 1’ 6”</td>
</tr>
</tbody>
</table>
Other materials (both door types)

This list covers the materials that are required for both size cages and both door types (glass and plexiglass).

TIP: The screw numbers below are accurate but it is recommended that you buy more than the stated amount to account for losses and damage etc.

<table>
<thead>
<tr>
<th>Screws</th>
<th>3' x 2' Cage</th>
<th>4' x 2' Cage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2" – Philips head self tapping for securing the timber strips to the front of the cage. I place a screw every 6" along the strips.</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>• 1 1/4" for 1/2" thick material
• 1 3/4" for 3/4" thick material
Philips head self tapping for securing the sides - every 6".</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>3/4" screws for securing basking light battens</td>
<td>2 per batten</td>
<td>2 per batten</td>
</tr>
<tr>
<td>1/2" – for securing plastic vents. If you are using other vent types then clearly you would need to alter this figure and even the screw size.</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>1/4" – for securing florescent batten to cage roof</td>
<td>2-3</td>
<td>2-3</td>
</tr>
</tbody>
</table>

General materials for cages

- 2 Plastic vents approximately 6" x 3" or 8" x 4" (You could add another vent for a 4' cage if you choose. Larger vents are OK also.)
- Light batten for Fluorescent light (2' or 3') and UV fluorescent light globe to fit
- Light fitting for basking light (s) and globe (s)
- 2 x 3'-4' cheap extension cords or electrical wiring (You can cut these and use for the lights. I like to put inline switches in them but this is a personal preference)
- Heatmat (see other booklet on how to make one)

TIP: Purchase the Plexiglass or Glass after you have made the main cage. That way you can measure it from your cage or door dimensions and ensure you get the measurements correct.
Specific Materials for cage with Plexiglass or Perspex Door

- Plexiglass or Perspex can use either 3/16" or 1/4". Get the Plexiglass after you have constructed the main cage.
 - For 1/2" thick material the dimensions should be 3' x 1' 6 1/2"
 - For 3/4" thick material the dimensions should be 3' x 1' 6 3/4"
- 1 x 1 1/4" Cam lock (see picture below) – need 3/4" drill bit
- 2 screen holders or similar to hold the ends of the doors. These are small but you can get larger ones made of metal that are a lot stronger for large reptiles. (see picture below)
- 3 hinges " x 1"
- 6 bolts and nuts 1/2" x 5/32" (or thereabouts) to bolt to the Plexiglass door
- 8 x 3/4" screws (hinges and door holders)

Specific Materials for cage with Glass Door

- 3/32" glass. Get the glass or Plexiglass after you have constructed the door. That way you will be certain you have the right size. The sizes are written below but these are exact. It is far more preferable to make the door frame and then measure the inside.
 - For 1/2" thick material the dimensions should be about 2' 9 1/2" x 10"
 - For 3/4" thick material the dimensions should be about 2' 9 1/2" x 10 1/4"
- 1 x 1 3/4" Cam lock (see picture below) – need 3/4" drill bit
- 4 x 1 3/4" screws
- 3' strip of piano hinge. This can be bought by the foot and is not expensive. It will last a lot longer then normal hinges and it much stronger when holding on the door.
- Enough 1/2" screws for the piano hinge
- 2 Hook & eye fittings (see picture below)

Optional (both)

- Solid castors to make the cage easily moveable.
Diagrams

Front View of Cage
This diagram shows what a 3'x2' cage with a Plexiglass front looks like from the front.

![Front View of Cage Diagram]

Side view of the cage.

![Side View of Cage Diagram]

Notice that the Plexiglass is much thinner and so a timber strip has to be put on the front of the cage to meet the Plexiglass and create a secure, escape-proof cage. The glass doors do not require a strip as the timber is the same width as the timber strips.
Actual measurements are written further on in the book but for general reference the TOP has been used to determine the cage size. Using this you can then calculate the rest:

- The BASE will need to be the same length of the top, less twice the thickness of the material. It is also the same width as the TOP less one thickness of the material.
 - eg if your material is 1/2" thick then the base is 1" less in length and 1/2" less in width.
 - eg if your material is 3/4" thick then the base is 1 1/2" less in length and 3/4" less in width.

- The BACK is the same length as the base and the same height as the SIDES.

- The SIDES are the width of the base PLUS the thickness of the BACK.

See the diagram below to get a better idea.

TIP: You can use the measurements from the diagrams in the next few pages to get the large pieces cut to size at a cabinet makers or kitchen shop for a few dollars if you do not have the tools or if are not confident enough to do it at home.
The diagram below has the dimensions for a 3’x2’ cage using sheeting for the sides and back that is 1/2” thick. The cage will be lighter and provided you take enough care, will be strong and very functional.
The diagram below has the dimensions for a 3’x2’ cage using sheeting for the sides and back that is 3/4” thick. This cage is much heavier.

Dimensions for a 3’ x 2’ Enclosure
Using 3/4” thick MDF, Plywood or Melamine
The diagram below has the dimensions for a 4’x2’ cage using sheeting for the sides and back that is 1/2” thick. This cage is much lighter but still strong.

Dimensions for a 4’ x 2’ Enclosure
Using 1/2” thick MDF, Plywood or Melamine

- **Back**: 2’ 11” x 1’ 6”
- **Base (Melamine)**: 2’ 11” x 1’ 11 1/2”
- **LH Side**: 1’ 6” x 2’
- **RH Side**: 1’ 6” x 2’
- **Top**: 4’ x 2’
The diagram below has the dimensions for a 4’x2’ cage using sheeting for the sides and back that is 3/4” thick. This cage is would be very heavy and may require castors to move it easily.

Dimensions for a 4’ x 2’ Enclosure
Using 3/4” thick MDF, Plywood or Melamine
Step by step instructions

Main Structure

Step 1 - Cutting the pieces

Start by cutting all of your sheet timber to the sizes in the diagram for your particular cage. Do not worry about the timber fronts or doors at this stage.

You need to make sure you cut the timber square as the whole cage structure depends on the base, backs and sides being square.

TIP: Once you have cut the base, use it as a template for the length of the back, as they are the same length.

Similarly you can use the sides to ensure they are the same height as the back.

This picture shows the cut pieces of the base, back and two sides laid out before assembly. The sides should be the thickness of the back wider than the base.
Before you start joining the pieces

You need to make some decisions about how you will finish your cage. Are you going to paint it, put a clear finish on it or are you using melamine.

Countersinking Screw Tips:

Depending on how you want to finish your cage you have a number of choices as to how you countersink the screws. Each has its advantages and disadvantages.

In all cases I recommend countersinking the screw to some degree.

- Countersink flush with timber surface and leave screw head showing.
- Countersink below surface and fill with putty or plastic plugs.
- Countersink and fill with plastic or wooden plugs
 - wooden plugs work best only the timber front pieces
 - MDF and plywood work best with putty - paint
 - melamine works best with plastic plugs

Plugging the counter sink hole with putty is better if you intend to paint the enclosure. Wood plugs are great for a timber finish. Plugs are best with melamine as you do not need to paint it.

If you do not have a countersink bit, just use a drill bit the size of you screw head.
Step 2 - Putting on the sides and back

Start by screwing and gluing the sides to the base using the 1" screws (if you use 3/4" thick sheeting the screws will need to be 1 1/2" to 1 3/4").

I would normally pre-drill the two end holes on the side first without any glue so I know the screw will go in easily and be in the right spot. Take your time and avoid rushing when putting in the screws. It is easy to make mistakes as they go in quickly once you start.

TIP: Start by only putting in two 1" screws at each end (not to close) without glue. Then apply the glue. Once they are in you can drill and put the others in without having to hold material.

I use a clamp here as you need something to hold them together.

Once the first two are in it is very easy to put the remainder.

Screws should be placed about every 6".

I pre-drill all of the holes in succession, including the counter sinking, so that screwing them in later is very quick and easy.
The sides are best put on first as they are not very heavy compared to the back. Notice the sides extend beyond the width of the base.

The glue may ooze out from the join, so it is important that you clean it up as you go.

Next you put on the back. Run glue along the base and the edges of the sides and carefully place the back into position.

I would drill two screw holes first at the top and put in some securing screws. Once this is done, putting in the remaining screws is very easy. Place these about every 6" along the base and up either side.

If the back and sides are square, the unit will be square at this stage.

Notice the glue that has oozed out.

A damp cloth is the best way to remove it. It should be done now, before it dries.
Step 3 - Putting on the top

The top should fit exactly over the structure.

Run glue along all of the top edges and carefully place the top into position. Pre drill two or more screw holes to hold it into position and screw these in.

Now it is a matter of placing the remaining screws in the top, strengthening the whole structure. Again, pre-drill all of them so that you are sure the screws will not poke through into the cage or out of the material.
Step 4 - Putting on the Front pieces

These can be any sort of timber. I use pine as it is inexpensive and the cages are painted, but any sort will do. The timber is 3/4" thick.

These pieces do a number of functions. They both add rigidity to the cage structure.

The smaller piece goes along the top. This prevents the top sheet from sagging.

The larger one goes along the bottom of the cage. It creates a structure for the door to hang onto and also acts as a dam for the substrate.

Cut the pieces to the desired length of 3 ft or 4 ft, depending on the cage.

It is probably easier to put the cage on its back for this. You could also use clamps underneath the rail to hold it in position while you secure it into place.

Pre-drill some holes and then run some glue along the front edges of the cage. Place the timber strips in position and then secure them with 1 3/4" screws.

Place a screw about every 6". Be careful near the corners and try to avoid other screws you may have already in the structure.
Putting on the Spacer Strips for a Plexiglass Door.

If you are using a glass door, you do not need spacer strips to do this as the door is the same thickness as the front timber strips. (Go to Page 29 for instructions on installing the vents)

Before you put on the Plexiglass (Perspex) door, you need to put some spacer strips down the front of the cage to close any gaps as the Plexiglass is a lot thinner than the front timber strips (see diagram on page 17).

You can use cut off from the plywood or MDF or small strips of timber for the spacer strips. The spacer strips need to be the about 1/2" thick so that when the Plexiglass rests on the strip it is flush with the timber strip that goes along the front of the cage. See the diagram below for a detailed view of the cage from the side.
Measure the distance between the two timber pieces along the top and bottom and cut your 1/2" spacer strips to that length.

They can be 3/4" to 1" wide. This does not matter.

Place them into position and pre drill the holes.

Make sure you are careful to drill these properly.

Glue them and secure them with screws.

This needs to be about 1/2" thick. Plexiglass should sit against it and be flush with timber pieces.
Step 5 - Installing the vents

We are now ready to cut the vent holes and put in the vents. Actually, once you have made one you would probably do this earlier as they are easier to attach when the cage is in pieces.

Get your vents and measure the size of the hole that you need to cut out. Be careful to make sure you have account for the screw positions and do not cut out too big a hole.

The vent on the right is about 6 1/2" x 3 1/2" but the hole pictured is only 5 1/2" x 2 1/2".

If your vent is an odd shape or is round it is a good idea to make a cardboard template of the shape and use this to draw around before cutting the holes.

Carefully measure where you vents will be positioned. The vents in the cage being made are about 2" from the top and 6" from either end, but it does not make a great deal of difference.

They are placed in the back of the enclosure here purely for visual reasons but they work equally well in the side.
You will need to drill some holes for your jigsaw or keyhole saw to start off with.

Carefully cut out the shape and secure the vents, making sure they are level and straight.

Finished vent hole. It’s not very neat but being at the back of the cage it will not visible.

TIP: If you intend to paint your cage, now is a good time to fill all the holes and paint it, before the vents are secured. All the timber work is done – unless you have a glass door, and that can be painted later.

Completed vents inside the cage.

Ideally this cage should have been painted before securing the vents. It is easy enough to remove them and paint it later.
Step 6 - Putting on a Door

Plexiglass Door
You should be able to measure the dimensions of the opening for your Plexiglass door easily. Allow about 1/4" for spacing of the Plexiglass (1/8" top and bottom). You need to allow for the hinges and any variations in your cage dimensions.

For a 3 ft cage use three hinges and for a 4 ft cage use four (or more) hinges, depending on how thick your plexiglass is.

TIP: Use a piece of scrap timber under the Plexiglass when drilling the holes. The holes should be drilled carefully without too much pressure to prevent the Plexiglass cracking but enough to prevent chipping when the drill bit breaks through.

Measure out the distance for the hinges carefully and mark these on your Plexiglass. A small non-permanent marker pen is good for this.

The diagrams below show you where to place the hinges on your Plexiglass.

3 ft piece of Plexiglass

4 ft piece of Plexiglass

Carefully mark where you need to make the holes for the hinges on the Plexiglass.
Make sure you have the hinges level and mark the centre of the holes for each of the hinges. Drill each hole and attach the hinges to the Plexiglass door.

If the bolts are too long, you may have to shorten them.

These bolts have been shortened and smoothed using a file.

You should either file them so they are smooth or put a coating over the top of them, like a dab of PVA glue, nail polish or silicone. This helps prevent any injury to the animals.

The bolts at right have a dab of Silicone – not very elegant but effective.

TIP: Use matches or nails to rest the door on before you attach it with then hinges (see picture).
Carefully line up the door with the cage and mark the center of the hinge holes for the screws.

Note the nails under the Plexiglass to ensure an even distribution along the timber front.

Attach the Plexiglass door to the cage using 1/2" screws.

Again, put in the two end screws first, check the door and then put in the rest.

Wooden Door with internal Glass or Plexiglass

Wooden doors require a bit more work than a Plexiglass door but they are simple enough to make if you have the right tools.

TIP:
The more accurate your 45° cut, the better the door. You need to make these cuts carefully.

Measure the top and bottom pieces and cut them with a mitre box, a mitre saw or radial arm saw. These pieces should both be as wide as the cage - either 3 or 4 ft.

TIP: The side pieces of the door frame need to be 1/4" to 5/16" **shorter** than the distance between the top and bottom front timber pieces. Making them shorter will allow for the hinge and also the arc of the door as it closes.

Measure this distance and cut your side pieces using a mitre box or saw.
NOTE: If you are going to put Plexiglass on your frame you do not need to make a channel in the door frame. You can screw the Plexglass onto the back on the door.

If you do intend to use glass, you need to make a channel with a router. You can use an electric plane at a pinch but router will do a much better and more accurate job.

In the diagram to the right you will notice the router bit is higher. The sharp edge cuts along the front of the timber, giving a cleaner finish.

The channel for the glass to fit into can clearly be seen on the right.

Once the pieces are all cut you apply glue and clamp them together.

The 90° clamps can be bought for not much money and make building a frame much easier.
Make sure the door frame is square when you are clamping it.

Clamp the pieces securely.

Next you will put some screws into the frame to pull the pieces together tightly and make the structure stronger.

Pre-drill holes on both sides when you are sure the door is square. These screws are better being put through the two side pieces as when put the piano hinge on the frame the screws can get in the way if they are on the bottom piece of the frame.
When you pre-drill these, make sure the size of the first hole through the outside piece is larger in diameter than the screw. The second hole, into the other piece should be smaller than the screw. See detail below.

This ensures the screw goes through the first piece of timber easily and the screw pulls the other piece tightly into place.
Putting in the Glass

Once the glue has dried you are ready to put the Glass or Plexiglass into the door.

Measure the internal size of the door before you go and get the glass. You need to get a piece about 1/8"-3/16" smaller than the internal rebate in the door.

Run a bead of silicone around the channel of the door

You should be able to run a bead of silicon about 1/8" bit thick around the channel.

Gently place the glass into the frame and push down until it is level with the frame.

Once dry it will hold the glass in the frame. If you are worried about it falling out you can use bits of plywood or similar to hold the glass in place.

The picture here shows how to do this. Notice there is a small amount of silicone underneath the timber piece. This takes some of the shock and also holds the glass in a little more firmly.
Attaching the Door

To attach the door to the cage, a Piano hinge is used. These are strong and last a lot longer than smaller hinges on heavy doors, especially when they are opened and closed a lot.

You will need to cut the hinge to size and trim the corners.

Once this is done, place the hinge along the door so that it evenly spaced at both ends and the round part is facing outwards from the door.

Mark the centre of the holes and pre-drill them with a very small bit.

Screw all of the screws into the door.

Place the door against the cage and line up the edges either side, so the door matches the cage.

Mark the holes carefully in the centre. Make sure that the outside of the hinge is level with the outside of the timber frame.

Pre-drill two holes at the ends and one in the centre then use three screws to secure the hinge in place.

Test it and make any adjustments. Yo may need to plane of some of the tops of the door if you have made the side pieces too long.
Pre-drill the remaining holes with a small drill bit and then secure the hinge with the remaining screws.

The cage with the door fitted and is ready to be sanded and painted.
Painting

If you have made you cage out of MDF, particle board or Plywood, now is a good time to paint it. The fittings are not on the cage and you can sand it and paint the cage without having to worry about going over bits and pieces.

If you cage is made of melamine then this is where you should put the covering strips and finish any exposed areas of the melamine edges.

Before you paint the cage, make sure you fill in any holes or uneven areas with a suitable wood putty or wood filler than can be painted over.

A good idea it to the Plexiglass door and vents off the cage (or even the wooden door) before you paint. Even though it is a bit of a nuisance, it saves you time in the long run, especially if you are doing three coats.

Give the cage a good sanding after you have filled the holes and before you paint. The smoother the surface of the cage, the better the paint finish.

The cages can be painted with enamel or acrylic paint if it is MDF. Satin, gloss or flat paints are a matter of preference. If you are uncertain the best thing to do is to use a satin paint as it is neither too glossy and does not look flat either.

You can paint the cages with brushes or rollers or spray.

Spray works well on MDF as the MDF board has a very smooth finish that allows for a good finish with spray paint.

If you are going to spray paint, use plenty of newspaper. Tape newspaper over areas you do not want to get paint on such as vents (if still on) and the melamine floor.

Lightly sand with a very fine sandpaper between each coat of paint. It is best to have two to three coats of paint. The cage in the picture below has three coats.

If you are using plywood, you can stain the wood with a dark stain first and then put two clear coats of polyurethane over the top. Staining allows you to give the timber deeper colors and also hides any small blemishes and minor mistakes.
The painted cage below is ready to have the fittings put back on it.

This has already got castors on it, but these are easily put on at any time.
Putting it all together

Step 7 - Adding Locks

I like to be able to lock my snake cages. It’s not that theft is a big issue where I live but rather if I have visitors or young children around I like to be able to lock the cages and prevent people opening them or someone taking out my snakes without my permission.

A simple Cam lock is quite effective.

To install a Cam lock you will need a 3/4” drill bit. You will need a 1 1/4” Cam lock for a Plexiglass cage and a 1 1/2” Cam lock for a wooden door frame.

Installing a Cam lock is a reasonably simple procedure.

Measure along the top of the door and mark the center. This is where the Cam lock will be placed. Measure 1” in from the top of the door. This is the center of the hole for the Cam lock.

Drill a 3/4” hole. Place the Cam lock in the hole.

Before you tighten the Cam lock, make sure that it turns the correct way to lock the cage. Make the necessary adjustments and then tighten the securing bolts.

If your Cam lock comes with a pronged washer (see – picture - it looks like a washer with protruding pieces that go in the timber to hold it in place), use that piece to secure the lock in place. You do not need that piece if you are using Plexiglass as it will damage the Plexiglass.
Step 8 – Adding Door Fasteners

Depending on the type of door you use, you can have a range of fasteners.

Plexiglass doors can use Fly Wire Screen holders or even a strip of timber with a hole in it, attached to the front of the cage.

Wooden Doors can also use these or can use hook & eye latches attached to the side of the door.

These are very simple to put on. Take care when attaching them to measure equal distances from the edges of the cage or doors. It just makes the cage look a lot more professional if these small things are done correctly.

These are simply screwed into the top piece of timber on the cage. Notice the piece will not sit totally flat on the timber. This is generally not the case for metal ones, which are stronger but can scratch the Plexiglass.

Because these plastic ones did not sit flush on the timber front they to have a small hole drilled to about 1/8'' depth. This enables them to sit flush on the timber surface hold the Plexiglass in securely.
The hook and eye latch at right is also very easy to install. The best way is to put the hook onto the door frame on the side first.

This allows you to get a good position on the position for the eye that the hook goes into.

Make sure the hook latch has the eyelet piece positioned horizontally; extending the hook as far as it can reach. To do this mark where to place the eyelet for the hook, taking care to ensure the end of the hook will line up with the eyelet.

As you can see from the picture at right, both eye pieces are set horizontally. This prevents movement of the latch and eye pieces, keeping the door securely and tightly in position.
Step 9 – Lighting

Lighting will generally consist of basking lights that provide heat for the reptiles and UV light for their health and well-being. Some species of snakes do not require UV but many lizards and turtles require UV light for their skin and shells to remain hard, as well as their general health.

This cage will have both. You will need electrical wiring of some description to wire both lights.

Cheap extension cords, with one end cut off, make good light wiring if you do not have any electrical wire handy. Make sure you strip the wire back to reveal the wires underneath. A razor or sharp knife will do the job quite nicely.

Drill holes at the top of the cage that are large enough to put the wiring through.

Basking Light

The batten for the basking light may have to have a piece cut out of the side to allow the wire to go in.

Your basking light may also need a wire cover to prevent snakes that climb from touching the globe and burning themselves.

Cut the wire like the diagram at right. These wires were cut to expose about double what would fit into the light batten. The wires are then twisted and folded over to make stronger and better connections.

Put the wire through the hole in the back of the cage.
Put the wires into the batten, being careful to follow the wiring directions.

If you are unsure about this, buy light battens that come with directions. This is usually pretty straightforward and most of them have color coding for the wiring to make it easier.

Green is usually earth, blue or black is neutral and red or brown is active.

For lights, generally it does not matter which connection the blue/black and red/brown go in, as long as the earth is in the correct connection.

Notice that none of the wires are exposed.

Place the basking light batten over the area where you would like the reptile to bask. Usually you would put it somewhere at one end of the cage over where the heat mat is also located if you are using a heat mat. Secure the light in with screws.

TIP: Check how far the screws will protrude from the end of the batten into the wood before you screw them in. It is very easy to use screws that are too long and puncture the roof of the cage, ruining the cage top.
UV Light

The UV light is a special reptile fluorescent light, available from any reptile supply stores. We recommend Zoo Med’s Reptisun 5.0 UVB based on current best practices. (see UV lighting sheets for more detail)

You can use a standard fluorescent batten for the UV lights. The batten may have to have a hole drilled into the side for the wiring as they are mostly made for ceiling wiring.

Put the wiring into the cage and connect the wiring it to the batten.

Attach the batten to the ceiling of your cage using 3/8" screws or 1/2" screws with a number of washers. This prevents the screws breaking through the roof of the cage.

The light should not be too far from the reptiles in order for them to get the maximum benefit from the UVB.

The light in this picture is about 15" from the animals. This distance can be shortened with basking rocks and branches in the cage, bringing the reptile to within about 12" or closer to the UVB light. This ensures better production of Vitamin D3 in your reptile.

It is a good idea to use a timer with your lighting so that you can imitate the daylight hours of your cage.

These are simple devices that are can be connected to your lights and turn them on and off automatically over a twenty four hour period.
Step 10 - Heating

Heating is an essential component of any reptile enclosure. It can be in the form of a range of options including:

- Heat mats
- Ceramics lights
- Heating lamps
- Hot Rocks

Whatever you choose, you need to heat the cage, monitoring and maintaining a temperature range that’s suitable for your reptile.

Heat mats come in a variety of types from homemade to commercially available pre-built mats.

You need to make sure that you have a thermostat to regulate the heat in your cage. A thermostat measures or monitors the temperature in the cage and turns the heating device on and off, based on the temperature at which it has been set.

You also need a thermometer. There are a variety of these available from a simple thermometer that can be move about the cage, to max/min thermometers to spot thermometers that can be pointed at an exact location and measure the temperature at that location. It is essential you have at least one type of thermometer to help you monitor the temperature of the cage. If the temperature is not high enough, many snakes are not able to properly digest their food.

This booklet has an accompanying booklet on making a heat mat. These are very easy to make and do a great job of maintaining a consistent temperature in your cage.

Pictured are two variations of thermostats. One has a probe which is placed within the cage to measure the temperature at a particular place. These are more accurate but more expensive.

The other thermostat is placed somewhere in the cage, usually o the back wall they are cheaper and not as accurate.
For more information and a more complete discussion go to this site:

Below is a Flexwatt heat mat with wiring. The cord is plugged into a thermostat with a probe. Usually the probe in this sort of heat mat would go on top of or underneath the mat. These mats are safe to place in cage, under substrate or newspaper.
Where to from here?

Cage Accessories and Furniture

Water Bowls
Water bowls are essential. They should be at both ends of the cage and always have clean, fresh water. They can be a simple lid or a decorative piece that looks like a rock. They need to be fairly spill proof. This one pictured is made by Hagen but there are a number of other quality manufacturers. (Keep a water bottle near the cage – that way you can fill it whenever you are near)

Basking spots
Reptiles bask to generate body heat, aid digestion and maintain their health. Basking rocks allow them to get closer to the heat source, allowing the animal to manage its body heat.

You cage should provide a basking spot below a heat lamp for your reptile’s comfort.

Hide Boxes
Ideally your reptile should have a hide box at both ends of the cage to enable it to hide and regulate its temperature where it chooses. A hide box can be a simple wooden box, a manufactured product, a terracotta pot plant base with a hole cut in it, a hollow log or any number of things that would allow your reptile to feel safe and secure. Do not use pine or cedar logs, as these are thought to contain harmful tars and oils that may damage the health of your reptile.

Branches and plants
Many reptiles love to climb. Providing them with branches and natural looking pieces will make them more comfortable and improve their environment. You are encouraged to make your reptiles home as comfortable as possible, but without overcrowding it.

Artificial plants will give your cage a more natural feel, without having to change the plant every few days.
Substrate
The substrate is the material that sits on the bottom of the cage. It can be newspaper, wood shavings (not pine or cedar), sand, artificial turf, recycled paper etc. We have had good success with cat-litter that is made from recycled paper. It removes odour, absorbs liquids very effectively and is easy to clean. If you place it over a newspaper base, it is even easier to clean up as you simply fold the newspaper in, collecting most of the substrate with it and remove the lot.

Some owners who use recycled paper do recommend that you feed the reptiles outside of the cage in another container to prevent the reptile from ingesting pieces of the substrate, which can be dangerous for their health.

Cage wallpaper
You can purchase posters or backgrounds for your cage to make it look like the animals natural environment eg desert, rainforest, savannah, woodland, grassland etc.

Castors
Some cages can be very heavy. Castors are a good way of allowing you to move very heavy cages.

Castors should be secured to a piece of timber that is fastened to the cage. This will distribute the weight of the cage across the securing timber more evenly, preventing the caster pushing in a weak point of the cages base.

If you do use castors you can secure the cage in a position by using small furniture leg cups that the castors sit in, preventing movement when you knock or open the cage.
Cage Variations

Hide Shelf
Some species live in burrows or holes in the ground. Essentially you do this by creating another shelf in the cage with a hole in it to another chamber below the floor (you can raise the cage higher if needed). This chamber does need a door to it but this is a fairly simple procedure using the technique you’ve used above.
The diagram below illustrates how a cage with a chamber could be easily made using the same techniques.

Top Lid
You can also make the top open on the cage. This adds some versatility to the cage. The top can go about half the width of the cage, leaving room for the lights.

Alternatively, the top can go across the whole width of the cage, in which case the lights would be attached to the hinged lid and open up with the cage. If you do decide to do this, make sure you allow for some extra wiring so that the lid will open properly without breaking the wiring or pulling it from the lights.

Some cages have only a top lid. This type of design is OK if the cage is low to the ground but can be a nuisance if you have the cage up higher, as access is difficult. If you have a snake that is inclined to strike a lot, then having access only from the top will make getting the snake out difficult.
Arboreal Cages

Arboreal cages can be made in a range of ways. The cage designs shown here can be adapted so that they are vertical instead of horizontal.

It is probably better to make a fairly large cage, about 5' to 6' high and about 2 1/2' to 3' wide by 2' deep. The doors are much larger and ideally you would put two doors on an enclosure of that size.

The doors would need strong hinges and it is recommended that you use cabinet maker hinges. These have the added advantage of being adjustable as well as strong. (See Picture) You can purchase the drill piece needed to put on these hinges. However a much simple and more effective way is to take the doors to a cabinet maker. They have the drills preset for these and for the price of a few dollars they will drill all of the holes to the exact dimensions and locations.

The best part is the ability to adjust them. That way your doors can line up exactly and you can ensure an evenly closing door that lines up with the cage frame correctly.

The doors can be framed or it can be cut from one piece of sheet by cutting windows out of the sheet. This is very strong method of making large doors. The internal pieces that have been cut out can be used to put shelving for the reptile in the cage. This shelving also strengthens the sides and helps maintain the rigidity of the cage. (see diagram below)

The entire cage can be made from Melamine as it is possible to construct these cages without having any of the edges showing or having to be covered.

This allows for black, white, laminates and a host of colours.

©reptile-cage-plans.com
This diagram shows the main construction of the cage. The main cage structure uses the existing edge of the melamine. This gives the cage a clean and neat finish. It also means that you do not have to paint the cage structure.

Notice the shelving. This can be use for the reptile to rest on and also adds strength to the cage. You can of course add branches and other decorations. The shelves are made from the material cut from the front doors.

The cage at right has a small dam at the base and another strip of timber across the front. This is optional but does serve two functions. It strengthens the front sides and keeps them from bowing.

It also gives a strip for the two doors to meet together, making the cage more secure.
This is a side view of the cage to show how the melamine pieces go to make up the structure.

Notice the two strips.
The front doors are MDF sheets with the window pieces cut from them.

If you use glass you will need to rout the inside of the frame.

Plexiglass provides an easier alternative if you do not have a router as you can drill holes in the Plexiglass and attach it with screws.

The larger door should require about three hinges and the smaller one two, although more hinges will be stronger.

You can see the detail for the back of the door if you are going to use glass. The routed area would be the same dimensions as was used on the door frame for the terrestrial cage.

Silicone and perhaps some timber strips will ensure the glass is kept in place.
Finish
Melamine plugs
Painting doors

Securing Locks
You can use a variety of locks on your cages. A lockable hinged hasp can be used. These are screwed onto the front door and the lockable hasp is attached to the side of the cage.

The picture shows one type of these hasps. They can be picked up from larger hardware stores. An alternative is to get a hinge hasp that you put your own lock on but the hasps with the lock already on it is a much neater solution.

Heating and lighting for arboreal cages.
Basking lights are important for arboreal species but they must be covered to prevent the reptile from burning itself. They are placed at the top (2-3) and can also be placed under shelves.

Humidity is also often important for these species so a waterfall in the cage base or installing a humidifying device (misters, humidimats) is sometimes required (not all species require this so check what your reptiles needs are).

Cages for Juvenile Reptiles
Juvenile reptiles can easily be kept in small containers for quite a long time. They do not require a large space and will thrive quite happily in smaller areas.

The cage above will house a juvenile snake provided a heat mat is placed underneath it and the temperature within the cage is monitored. Again, the reptile should be provided with a range of temperatures, so that heat mat would only need to be under about 2/3rd's of the cage.

When the reptile is large enough it can be moved to a larger container. Some owners progressively move their animals from smaller cages to larger cages as the animal grows.

The holes on this cage are possibly a little large for some species so make sure that you air holes are too small for the snakes head or reptile to fit through.
Conclusion

I hope you have found this booklet a valuable resource.

Any feedback would be greatly appreciated, as would any tips, tricks and ideas that you would like to see added to the book. If there are any glaring omissions or mistakes on my part, I apologise for these and ask that you send me an email pointing these out so they can be rectified in future publications.

Please understand that this is a work in progress and I have endeavoured to provide the best possible information available at the time.

I can be contacted via support@reptile-cage-plans.com

Happy Reptile Keeping.

Mark Chapple